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Taylor Tables of Differencing Schemes I

Notation: Consider u(z,t) for fixed t and x = jAz so that,
u(xr + kAx) = u(jAx + kAx) = ujik.

The generalized form of the Taylor Series Expansions is given by
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For example, consider the Taylor series expansion for u;4:
Ju 82

Or for u;_s:




Finite Difference Formulas.

Take the expansion for u;_1

ou
Uj_1 = Uj — Ax<8_x> | + 5
J

Rearrange terms to

Ou\  (uj —uj1)
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Truncation error term is er; = —I—%Agc (3—“> |
J

The truncation error er; is made up of 4 important pieces

er, = Sign Coefficient AP  (p + ¢)""Derivative




Taylor Table For the 1% Order Backward Difference'

e Given 5 : )
guy % T %)
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e Each term expanded in Taylor Series and placed in a table simplifing algebra.

e Note the multiplication by Ax to again simplify the table.
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e Truncation error term er; = %Aaz (a “) defined from the first non-zero column.

J

e Don’t forget the division by the Az to undo the previous multiplication.

e Order of accuracy is defined as the exponent on the Az term in er;.




Taylor Table For the 2" Order Central Difference'

e (Given

 (ujg1 —uy—a)

= €Iy

2Ax - ery

e The truncation error term er; = — 73 | is defined from the first

non-zero column.

e Accuracy is 2™¢ Order.




Taylor Table For A General 3 Point Difference Scheme'

e Starting with

ou 1 b _
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e The Taylor Table

Ax- Az Ax3.
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e Now instead of having colums sum to zero, we set enough colums to zero to

satisfy the number of unknowns.




Taylor Table For A General 3 Point Difference Scheme'

e This time the first three columns sum to zero if
-1 -1 -1 c
2 1 0 bl =1| —1
-4 -1 0 a 0

Note we put the linear equations into a matrix form, let Matlab do the work
for you.

Which gives [¢,b,a] = £[1, -4, 3].

In this case the fourth column provides the leading truncation

s b (@) _ A (3
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Thus we have derived a second-order backward-difference approximation of a

first derivative:
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Taylor Table For Other Derivatives, e.g. Q”dl

e Consider a gerneral 3 point formula for the 27¢ derivative
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e The Taylor Table is
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e Setting the first 3 colums to 0 leads to

-1 -1 -1
1 0o -1

—1 0o -1

e The solution is given by |a, b, c] = [1, -2, 1].




Taylor Table For 2" Derivative I

e In this case er; occurs at the fifth column in the table (for this example all

even columns will vanish by symmetry) and one finds
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e Note that Axz? has been divided through to make the error term consistent.

e We have just derived the familiar 3-point central-differencing point operator for
a second derivative
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